Difference between revisions of "Published Papers"

From Hyrel3D
Jump to: navigation, search
(30 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
|}
 
|}
  
Below is a list of published works citing Hyrel equipment. 118 documents as of 10 July 2019.
+
Below is a list of published works citing Hyrel equipment. 130 documents as of 9 September 2019.
  
 
== '''Published Papers''' Citing Hybrid Manufacturing ==
 
== '''Published Papers''' Citing Hybrid Manufacturing ==
Line 19: Line 19:
 
* [http://hyrel3d.net/papers/Hybrid_Processes_in_Additive_Manufacturing.pdf Hybrid Processes in Additive Manufacturing] by a team primarily from the [https://engineering.unl.edu/mme/ University of Nebraska–Lincoln's Department of Mechanical & Materials Engineering]
 
* [http://hyrel3d.net/papers/Hybrid_Processes_in_Additive_Manufacturing.pdf Hybrid Processes in Additive Manufacturing] by a team primarily from the [https://engineering.unl.edu/mme/ University of Nebraska–Lincoln's Department of Mechanical & Materials Engineering]
  
== '''Published Papers''' Citing [[Cold_and_Warm_Flow|Hyrel Cold Flow]] ==
+
== '''Published Papers''' Citing [[Reservoir_Heads|Unheated Reservoir Printing]] ==
  
 
==== Published in 2019 ====
 
==== Published in 2019 ====
  
 +
* [https://ieeexplore.ieee.org/abstract/document/8792957 Additive Manufacturing of Spiral Windings for a Pot-core Constant-flux Inductor] by a team from the [https://mse.vt.edu/ Material Science & Engineering Department of Virginia Tech]
 +
* [https://link.springer.com/chapter/10.1007/10_2019_108 Bioprinting Technologies in Tissue Engineering], part of the [https://link.springer.com/bookseries/10 Advances in Biochemical Engineering/Biotechnology] book series.
 +
* [https://www.sciencedirect.com/science/article/pii/S001430571931002X 3D-Printability of Aqueous poly(ethylene oxide)(PEO) G[els] by a team primarily from the [https://meditsiiniteadused.ut.ee/en Faculty of Medicine, University of Tartu]
 +
* [https://doi.org/10.1002/adem.201900604 A New Approach to 3D Printing Dense Ceramics by Ceramic Precursor Binders] by [https://scholars.huji.ac.il/magdassi/home Prof. Shlomo Magdassi's] group at [http://new.huji.ac.il/en The Hebrew University of Jerusalem]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201900158 Additive Manufacturing of 3D Structures Composed of Wood Materials] by [https://scholars.huji.ac.il/magdassi/home Prof. Shlomo Magdassi's] group at [http://new.huji.ac.il/en The Hebrew University of Jerusalem]
 
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201900158 Additive Manufacturing of 3D Structures Composed of Wood Materials] by [https://scholars.huji.ac.il/magdassi/home Prof. Shlomo Magdassi's] group at [http://new.huji.ac.il/en The Hebrew University of Jerusalem]
 
* [https://patentimages.storage.googleapis.com/3d/0a/dd/7cbdffd6d5f5ef/US20190168446A1.pdf Three-Dimensional Printing Control], a patent application by a team from [https://c3dmaterials.com/ Chromatic 3D Materials]
 
* [https://patentimages.storage.googleapis.com/3d/0a/dd/7cbdffd6d5f5ef/US20190168446A1.pdf Three-Dimensional Printing Control], a patent application by a team from [https://c3dmaterials.com/ Chromatic 3D Materials]
Line 102: Line 106:
 
*[http://www.anzors.org.au/pdfs/2014-proceedings.pdf Development of 3D printed Ceramic scaffolds for Treatment of Segmental Bone Defects] from [http://sydney.edu.au/engineering/research/centres/biomaterials-tissue-engineering/ The Biomaterials and Tissue Engineering Research Unit] of the [http://web.aeromech.usyd.edu.au/index.php Aerospace, Mechanical and Mechatronic Engineering Department] of [http://sydney.edu.au The University of Sydney]
 
*[http://www.anzors.org.au/pdfs/2014-proceedings.pdf Development of 3D printed Ceramic scaffolds for Treatment of Segmental Bone Defects] from [http://sydney.edu.au/engineering/research/centres/biomaterials-tissue-engineering/ The Biomaterials and Tissue Engineering Research Unit] of the [http://web.aeromech.usyd.edu.au/index.php Aerospace, Mechanical and Mechatronic Engineering Department] of [http://sydney.edu.au The University of Sydney]
  
== '''Published Video''' Citing [[Cold_and_Warm_Flow|Hyrel Cold Flow]] ==
+
== '''Published Video''' Citing [[Reservoir_Heads|Unheated Reservoir Printing]] ==
  
 
==== Published in 2017 ====
 
==== Published in 2017 ====
Line 108: Line 112:
 
* [https://youtu.be/3nKqwcXcEgY Additive Manufacturing of Toroid Inductor for Electronics Applications] by Chao Ding, [https://vt.edu Virginia Tech]
 
* [https://youtu.be/3nKqwcXcEgY Additive Manufacturing of Toroid Inductor for Electronics Applications] by Chao Ding, [https://vt.edu Virginia Tech]
  
== '''Published Papers''' Citing [[Cold_and_Warm_Flow|Hyrel Warm Flow]] ==
+
== '''Published Papers''' Citing [[Reservoir_Heads|Heated Reservoir Printing]] ==
  
 
==== Published in 2019 ====
 
==== Published in 2019 ====
  
 +
* [https://etd.ohiolink.edu/!etd.send_file?accession=case1565317654535383&disposition=inline Preparation and Applications of Stimuli-Responsive Composite Materials], a PhD dissertation from the [https://chemistry.case.edu/ Case Western Reserve University Department of Chemistry].
 +
* [https://www.nature.com/articles/s41467-019-10843-4#Bib1 In-operando High-speed Microscopy and Thermometry of Reaction Propagation and Sintering in a Nanocomposite] by a team from [https://www.cee.ucr.edu/ the Department of Chemical and Environmental Engineering, University of California, Riverside] and [https://chbe.umd.edu/ the Department of Chemical and Biomolecular Engineering, University of Maryland, College Park,]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S0010218018305480 Comparison study of the ignition and combustion characteristics of directly-written Al/PVDF, Al/Viton and Al/THV composites] by a team from [https://chbe.umd.edu/ the Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of Maryland]
 
* [https://link.springer.com/article/10.1007/s11095-019-2639-y A Proof of Concept for 3D Printing of Solid Lipid-Based Formulations of Poorly Water-Soluble Drugs to Control Formulation Dispersion Kinetics] by a team including the [https://www.ucl.ac.uk/pharmacy/ University College London School of Pharmacy]
 
* [https://link.springer.com/article/10.1007/s11095-019-2639-y A Proof of Concept for 3D Printing of Solid Lipid-Based Formulations of Poorly Water-Soluble Drugs to Control Formulation Dispersion Kinetics] by a team including the [https://www.ucl.ac.uk/pharmacy/ University College London School of Pharmacy]
 
* [https://pubs.acs.org/doi/abs/10.1021/acsapm.9b00016 Architecture can Significantly Alter the Energy Release Rate from Nanocomposite Energetics] by a team from [https://www.umdphysics.umd.edu/ University of Maryland's Dept. of Physics]
 
* [https://pubs.acs.org/doi/abs/10.1021/acsapm.9b00016 Architecture can Significantly Alter the Energy Release Rate from Nanocomposite Energetics] by a team from [https://www.umdphysics.umd.edu/ University of Maryland's Dept. of Physics]
Line 133: Line 140:
 
*[http://scholar.google.com/scholar_url?url=http://onlinelibrary.wiley.com/doi/10.1002/app.45083/full&hl=en&sa=X&scisig=AAGBfm08tdsc-a6hdNeaw1xB7JInXsZCeg&nossl=1&oi=scholaralrt Influence of Shear Thinning and Material Flow on Robotic Dispensing of PEG] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/ancac3 ACS Nano]
 
*[http://scholar.google.com/scholar_url?url=http://onlinelibrary.wiley.com/doi/10.1002/app.45083/full&hl=en&sa=X&scisig=AAGBfm08tdsc-a6hdNeaw1xB7JInXsZCeg&nossl=1&oi=scholaralrt Influence of Shear Thinning and Material Flow on Robotic Dispensing of PEG] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/ancac3 ACS Nano]
  
== '''Published Papers''' Citing Hyrel [[Hot_Flow|Hot Flow]] ==
+
== '''Published Papers''' Citing Hyrel [[Filament_Heads|Filament Printing]] ==
  
 
==== Published in 2019 ====
 
==== Published in 2019 ====
  
 +
* [https://escholarship.org/uc/item/5vh0z78v#main Magnetic 3D Printing of Hexaferrite Material], a PhD dissertation from the [https://www.ee.ucla.edu/ University of California, Los Angeles (UCLA) Electrical and Computer Engineering Department].
 +
* [http://josh.icis.pcz.pl/~K/resources/OWpapers/MROW2019b.pdf Prediction and Experimental Validation of Part Thermal Historyin Fused Filament Fabrication Additive Manufacturing Process] by a team from [http://www.buffalo.edu/ SUNY Buffalo]'s [http://engineering.buffalo.edu/mechanical-aerospace.html Department of Mechanical and Aerospace Engineering], [http://engineering.buffalo.edu/materials-design-innovation.html Department of Materials Design and Innovation], and [http://engineering.buffalo.edu/industrial-systems.html Department of Industrial and Systems Engineering] and the [https://www.unl.edu/ University of Nebraska-Lincoln] [https://engineering.unl.edu/mme/ Department of Mechanical and Materials Engineering]
 +
* [http://www.freepatentsonline.com/y2019/0231697.html Gastric Residence Systems for Sustained Delivery of Adamantane-class Drugs] by a team from [https://lyndra.com/ Lyndra Theraputics]
 +
* [http://www.freepatentsonline.com/y2019/0209090.html Gastric Resident Electronics] a patent application by a team from the [http://web.mit.edu the Massachusetts Institute of Technology (MIT)]
 +
* [https://vtechworks.lib.vt.edu/bitstream/handle/10919/91900/Liu_C_D_2019.pdf?sequence=1&isAllowed=y Smart Additive Manufacturing Using Advanced Data Analytics and Closed Loop Control], A Dissertation Presented to The Academic Faculty of the [https://www.ise.vt.edu/ Grado Department of Industrial and Systems Engineering (ISE) at Virginia Tech]
 +
* [https://link.springer.com/article/10.1007/s40005-019-00451-1 The Advent of a Novel Manufacturing Technology in Pharmaceutics: Superiority of Fused Deposition Modeling 3D Printer] by a team from [http://pharmacy.yonsei.ac.kr/ the College of Pharmacy and the Yonsei Institute of Pharmaceutical Sciences, Yonsei University]
 
* [https://www.cambridge.org/core/journals/mrs-communications/article/on-the-thermal-processing-and-mechanical-properties-of-3dprinted-polyether-ether-ketone/602A649BAF3A69235982033106FEF57E On the thermal processing and mechanical properties of 3D-printed polyether ether ketone] (PEEK) by a team from the [https://engineering.case.edu/macromolecular-science-and-engineering Department of Macromolecular Sciences & Engineering, Case Western Reserve University School of Engineering] and the Key Laboratory of E&M, [http://www.wsc.zjut.edu.cn/zjuten/index.jsp Zhejiang University of Technology]
 
* [https://www.cambridge.org/core/journals/mrs-communications/article/on-the-thermal-processing-and-mechanical-properties-of-3dprinted-polyether-ether-ketone/602A649BAF3A69235982033106FEF57E On the thermal processing and mechanical properties of 3D-printed polyether ether ketone] (PEEK) by a team from the [https://engineering.case.edu/macromolecular-science-and-engineering Department of Macromolecular Sciences & Engineering, Case Western Reserve University School of Engineering] and the Key Laboratory of E&M, [http://www.wsc.zjut.edu.cn/zjuten/index.jsp Zhejiang University of Technology]
 
* [https://www.sciencedirect.com/science/article/pii/S1359835X19302465 Composites based on metallic particles and tuned filling factor for 3D-printing by Fused Deposition Modeling] by a team from [https://www.nanociencia.imdea.org/ IMDEA Nanociencia] in Madrid
 
* [https://www.sciencedirect.com/science/article/pii/S1359835X19302465 Composites based on metallic particles and tuned filling factor for 3D-printing by Fused Deposition Modeling] by a team from [https://www.nanociencia.imdea.org/ IMDEA Nanociencia] in Madrid

Revision as of 12:41, 9 September 2019

Below is a list of published works citing Hyrel equipment. 130 documents as of 9 September 2019.

Published Papers Citing Hybrid Manufacturing

Published in 2019

Published in 2018

Published Papers Citing Unheated Reservoir Printing

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015

Published in 2014

Published Video Citing Unheated Reservoir Printing

Published in 2017

Published Papers Citing Heated Reservoir Printing

Published in 2019

Published in 2018

Published in 2017

Published Papers Citing Hyrel Filament Printing

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015