Difference between revisions of "Published Papers"

From Hyrel3D
Jump to: navigation, search
(47 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
|}
 
|}
  
Below is a list of published works citing Hyrel equipment. 97 documents as of 13 March 2019.
+
Below is a list of published works citing Hyrel equipment. 121 documents as of 16 July 2019.
  
 
== '''Published Papers''' Citing Hybrid Manufacturing ==
 
== '''Published Papers''' Citing Hybrid Manufacturing ==
 +
 +
==== Published in 2019 ====
 +
 +
*[https://res.mdpi.com/data/data-04-00071/article_deploy/data-04-00071.pdf?filename=&attachment=1 Isolation, Characterization, and Agent-Based Modeling of Mesenchymal Stem Cells in a Bio-construct for Myocardial Regeneration Scaffold Design] by a team from the [https://www.uao.edu.co/ Universidad Autónoma de Occidente de Cali - Colombia] and the [https://www.hes-so.ch/en/homepage-hes-so-1679.html University of Applied Sciences and Arts, Western Switzerland]
  
 
==== Published in 2018 ====
 
==== Published in 2018 ====
Line 19: Line 23:
 
==== Published in 2019 ====
 
==== Published in 2019 ====
  
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201808424 3D Printing of a Thermo- and Solvatochromic Composite Material Based on a Cu(II)–Thymine Coordination Polymer with Moisture Sensing Capabilities] by a team from [http://www.mse.ntu.edu.sg/Research/create/Pages/Home.aspx Nanyang Technological University (Singapore) and the Hebrew University of Jerusalem)]
+
* [https://doi.org/10.1002/adem.201900604 A New Approach to 3D Printing Dense Ceramics by Ceramic Precursor Binders] by [https://scholars.huji.ac.il/magdassi/home Prof. Shlomo Magdassi's] group at [http://new.huji.ac.il/en The Hebrew University of Jerusalem]
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201801048 Advancing Frontiers in Bone Bioprinting], by a team primarily from [http://www.ucla.edu/ The University of California at Los Angeles]
+
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201900158 Additive Manufacturing of 3D Structures Composed of Wood Materials] by [https://scholars.huji.ac.il/magdassi/home Prof. Shlomo Magdassi's] group at [http://new.huji.ac.il/en The Hebrew University of Jerusalem]
*[https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b00066 Direct Writing of Tunable Living Inks for Bioprocess Intensification] in [https://pubs.acs.org/journal/nalefd ACS's Nano Letters]
+
* [https://patentimages.storage.googleapis.com/3d/0a/dd/7cbdffd6d5f5ef/US20190168446A1.pdf Three-Dimensional Printing Control], a patent application by a team from [https://c3dmaterials.com/ Chromatic 3D Materials]
*[https://pubs.acs.org/doi/abs/10.1021/acsami.8b13792 Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting] by a team from the [https://www.bme.ufl.edu/ University of Florida's Biomedical Engineering Department]
+
* [https://patentimages.storage.googleapis.com/33/b4/42/fe445f0a06a898/US20190167961A1.pdf Methods and systems for precision application of agents to a target surface], a patent application by a team from [https://us.pg.com/ Procter & Gamble]
*[https://arc.aiaa.org/doi/abs/10.2514/6.2019-1239 Microwave Control of Composite Solid Propellant Flame Spread Through Eddy Current Heating of Wired/Foiled Propellant] by a team from [https://www.me.iastate.edu/ Iowa State University's Mechanical Engineering Department]
+
* [https://opencommons.uconn.edu/cgi/viewcontent.cgi?article=2464&context=gs_theses hBN-Acrylate Composite Printing: Stereolithography and UV-Assisted Direct Write], a Masters' Thesis from the [https://uconn.edu/ University of Connecticut]
*[https://link.springer.com/article/10.1007/s41779-018-00299-y Developments of 3D polycaprolactone/beta-tricalcium phosphate/collagen Scaffolds for Hard Tissue Engineering] by a multi-disciplinary, multi-university team from Istanbul, Turkey
+
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201900142 Printability of Methacrylated Gelatin upon Inclusion of a Chloride Salt and Hydroxyapatite Nano‐Particles] by a team from [https://uwaterloo.ca/waterloo-composite-biomaterial-systems-lab/ the Composite Biomaterial Systems Laboratory, Systems Design Engineering, University of Waterloo]
*[https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.8b00836 3D Printing of Poloxamer 407 Nanogel Discs and Their Applications in Adjuvant Ovarian Cancer Therapy] by a team from the [https://www.stlcop.edu/ St. Louis College of Pharmacy]
+
* [https://www.nature.com/articles/s41467-019-10061-y Extremely Stretchable and Self-Healing Conductor Based on Thermoplastic Elastomer for All-Three-Dimensional Printed Triboelectric Nanogenerator] by a team from [http://www.mse.ntu.edu.sg/Pages/Home.aspx The School of Materials Science and Engineering, Nanyang Technological University] and [https://www.share-huj.edu.sg/newcreate Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE)]
 +
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201801553 Printing Therapeutic Proteins in 3D using Nanoengineered Bioink to Control and Direct Cell Migration]  by a team by a team from [http://www.tamu.edu/ Texas A&M University].
 +
* [https://aip.scitation.org/doi/full/10.1063/1.5088801 Bactericidal Activity of 3D-printed Hydrogel Dressing Loaded with Gallium Maltolate] by a team from the [https://engineering.tamu.edu/biomedical Department of Biomedical Engineering], [http://www.tamu.edu Texas A&M University]
 +
* [https://www.sciencedirect.com/science/article/pii/S0264127519302278 Extrudable Hydroxyapatite / Plant Oil-based Biopolymer Nanocomposites for Biomedical Applications: Mechanical Testing and Modeling] by a team from [https://uwaterloo.ca/systems-design-engineering/?utm_source=uwaterloo.ca%2Fengineering&utm_medium=site The Systems Design Engineering Department of The University of Waterloo, Canada]
 +
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201900469 3D Printed Multifunctional, Hyperelastic Silicone Rubber Foam] by a team from the [https://engineering.case.edu/macromolecular-science-and-engineering Macromolecular Science & Engineering] Department of [https://case.edu/ Case Western Reserve University]
 +
* [https://patents.google.com/patent/US20190077071A1/en Extrusion Printing of Liquid Crystal Elastomers], a patent application by a team from the [https://be.utdallas.edu/ Bioengineering Department of the University of Texas, Dallas]
 +
* [https://www.mdpi.com/1996-1944/12/5/817/pdf Tailoring a Silver Paste for Additive Manufacturing of Co-Fired Ferrite Magnetic Components] by a team from [http://vt.edu Virginia Tech]
 +
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201808424 3D Printing of a Thermo- and Solvatochromic Composite Material Based on a Cu(II)–Thymine Coordination Polymer with Moisture Sensing Capabilities] by a team from [http://www.mse.ntu.edu.sg/Research/create/Pages/Home.aspx Nanyang Technological University (Singapore) and the Hebrew University of Jerusalem)]
 +
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201801048 Advancing Frontiers in Bone Bioprinting], by a team primarily from [http://www.ucla.edu/ The University of California at Los Angeles]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b00066 Direct Writing of Tunable Living Inks for Bioprocess Intensification] in [https://pubs.acs.org/journal/nalefd ACS's Nano Letters]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsami.8b13792 Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting] by a team from the [https://www.bme.ufl.edu/ University of Florida's Biomedical Engineering Department]
 +
* [https://arc.aiaa.org/doi/abs/10.2514/6.2019-1239 Microwave Control of Composite Solid Propellant Flame Spread Through Eddy Current Heating of Wired/Foiled Propellant] by a team from [https://www.me.iastate.edu/ Iowa State University's Mechanical Engineering Department]
 +
* [https://link.springer.com/article/10.1007/s41779-018-00299-y Developments of 3D polycaprolactone/beta-tricalcium phosphate/collagen Scaffolds for Hard Tissue Engineering] by a multi-disciplinary, multi-university team from Istanbul, Turkey
 +
* [https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.8b00836 3D Printing of Poloxamer 407 Nanogel Discs and Their Applications in Adjuvant Ovarian Cancer Therapy] by a team from the [https://www.stlcop.edu/ St. Louis College of Pharmacy]
  
 
==== Published in 2018 ====
 
==== Published in 2018 ====
Line 38: Line 55:
 
* [https://opencommons.uconn.edu/cgi/viewcontent.cgi?article=1601&context=srhonors_theses Effect of Silk-Based Hydrogel Topography on Intestinal Epithelial Cell Morphology and Wound Healing In Vitro] a thesis by Marisa E. Boch from the [https://cbe.engr.uconn.edu Department of Chemical and Biomolecular Engineering] at the [http://uconn.ecu University of Connecticut]
 
* [https://opencommons.uconn.edu/cgi/viewcontent.cgi?article=1601&context=srhonors_theses Effect of Silk-Based Hydrogel Topography on Intestinal Epithelial Cell Morphology and Wound Healing In Vitro] a thesis by Marisa E. Boch from the [https://cbe.engr.uconn.edu Department of Chemical and Biomolecular Engineering] at the [http://uconn.ecu University of Connecticut]
  
*[https://www.researchgate.net/profile/Homa_Maleki2/publication/325559793_Compressible_thermally_insulating_and_fire_retardant_aerogels_through_self-assembling_the_silk_fibroin_biopolymer_inside_the_silica_structure_-_An_approach_towards_3D_printing_of_aerogels/links/5b2ca6930f7e9b0df5ba7281/Compressible-thermally-insulating-and-fire-retardant-aerogels-through-self-assembling-the-silk-fibroin-biopolymer-inside-the-silica-structure-An-approach-towards-3D-printing-of-aerogels.pdf Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure - An Approach towards 3D Printing of Aerogels] by a team from the Chemistry and Physics of Materials department of [https://www.uni-salzburg.at/index.php?id=52&L=1 The University of Salzburg].
+
*[https://www.researchgate.net/profile/Homa_Maleki2/publication/325559793_Compressible_thermally_insulating_and_fire_retardant_aerogels_through_self-assembling_the_silk_fibroin_biopolymer_inside_the_silica_structure_-_An_approach_towards_3D_printing_of_aerogels/links/5b2ca6930f7e9b0df5ba7281/Compressible-thermally-insulating-and-fire-retardant-aerogels-through-self-assembling-the-silk-fibroin-biopolymer-inside-the-silica-structure-An-approach-towards-3D-printing-of-aerogels.pdf Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure - An Approach towards 3D Printing of Aerogels] by a team from the [https://www.uni-salzburg.at/index.php?id=210387&L=1 Chemistry and Physics of Materials Department] of [https://www.uni-salzburg.at/index.php?id=52&L=1 The University of Salzburg] and [https://www.chemie.uni-koeln.de/forschung_ac.html?&L=1 School of Inorganic Chemistry] at [http://www.portal.uni-koeln.de/9441.html?L=1 The University of Cologne].
  
 
* [https://www.nature.com/articles/s41467-018-04800-w.pdf Covalent-Supramolecular Hybrid Polymers as Muscle-Inspired Anisotropic Actuators] by an interdisciplinary team from [https://www.northwestern.edu Northwestern University]. ''The 3D printing experiments were supported by the '''[http://www.wpafb.af.mil/afrl.aspx Air Force Research Laboratory]''' under agreement number FA8650-15-2-5518''
 
* [https://www.nature.com/articles/s41467-018-04800-w.pdf Covalent-Supramolecular Hybrid Polymers as Muscle-Inspired Anisotropic Actuators] by an interdisciplinary team from [https://www.northwestern.edu Northwestern University]. ''The 3D printing experiments were supported by the '''[http://www.wpafb.af.mil/afrl.aspx Air Force Research Laboratory]''' under agreement number FA8650-15-2-5518''
Line 96: Line 113:
 
==== Published in 2019 ====
 
==== Published in 2019 ====
  
 +
* [https://www.nature.com/articles/s41467-019-10843-4#Bib1 In-operando High-speed Microscopy and Thermometry of Reaction Propagation and Sintering in a Nanocomposite] by a team from [https://www.cee.ucr.edu/ the Department of Chemical and Environmental Engineering, University of California, Riverside] and [https://chbe.umd.edu/ the Department of Chemical and Biomolecular Engineering, University of Maryland, College Park,]
 +
* [https://www.sciencedirect.com/science/article/abs/pii/S0010218018305480 Comparison study of the ignition and combustion characteristics of directly-written Al/PVDF, Al/Viton and Al/THV composites] by a team from [https://chbe.umd.edu/ the Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of Maryland]
 +
* [https://link.springer.com/article/10.1007/s11095-019-2639-y A Proof of Concept for 3D Printing of Solid Lipid-Based Formulations of Poorly Water-Soluble Drugs to Control Formulation Dispersion Kinetics] by a team including the [https://www.ucl.ac.uk/pharmacy/ University College London School of Pharmacy]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsapm.9b00016 Architecture can Significantly Alter the Energy Release Rate from Nanocomposite Energetics] by a team from [https://www.umdphysics.umd.edu/ University of Maryland's Dept. of Physics]
 
* [https://www.sciencedirect.com/science/article/pii/S2405886618300502 Comparative Characterization of the Hydrogel Added PLA/β-TCP Scaffolds Produced by 3D Bioprinting] by a team from [https://www.marmara.edu.tr/en Marmara University, Turkey]
 
* [https://www.sciencedirect.com/science/article/pii/S2405886618300502 Comparative Characterization of the Hydrogel Added PLA/β-TCP Scaffolds Produced by 3D Bioprinting] by a team from [https://www.marmara.edu.tr/en Marmara University, Turkey]
 
* [https://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta12428k/unauth#!divAbstract 3D Printing of Thermoreversible Polyurethanes with Targeted Shape Memory and Precise In-Situ Self-Healing Properties] by Yue Zhang, Xiangyu Yin, Mingyue Zheng, Carolyn Moorlag, Jun Yang and Zhonglin Wang.
 
* [https://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta12428k/unauth#!divAbstract 3D Printing of Thermoreversible Polyurethanes with Targeted Shape Memory and Precise In-Situ Self-Healing Properties] by Yue Zhang, Xiangyu Yin, Mingyue Zheng, Carolyn Moorlag, Jun Yang and Zhonglin Wang.
Line 112: Line 133:
  
 
* [http://pubs.acs.org/doi/abs/10.1021/acsami.7b13602 Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting] in the [http://www.acs.org/content/acs/en.html American Chemical Society's] [http://pubs.acs.org/toc/aamick/current Applied Materials & Interfaces Journal]
 
* [http://pubs.acs.org/doi/abs/10.1021/acsami.7b13602 Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting] in the [http://www.acs.org/content/acs/en.html American Chemical Society's] [http://pubs.acs.org/toc/aamick/current Applied Materials & Interfaces Journal]
*[http://pubs.acs.org/doi/abs/10.1021/acsami.7b11851 4D Printing of Liquid Crystal Elastomers] in the [http://www.acs.org/content/acs/en.html American Chemical Society's] [http://pubs.acs.org/toc/aamick/current Applied Materials & Interfaces Journal]
+
*[http://pubs.acs.org/doi/abs/10.1021/acsami.7b11851 4D Printing of Liquid Crystal Elastomers] by a team from the [https://be.utdallas.edu/ Bioengineering Department of the University of Texas, Dallas]
 
*[http://scholar.google.com/scholar_url?url=http://onlinelibrary.wiley.com/doi/10.1002/app.45083/full&hl=en&sa=X&scisig=AAGBfm08tdsc-a6hdNeaw1xB7JInXsZCeg&nossl=1&oi=scholaralrt Influence of Shear Thinning and Material Flow on Robotic Dispensing of PEG] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/ancac3 ACS Nano]
 
*[http://scholar.google.com/scholar_url?url=http://onlinelibrary.wiley.com/doi/10.1002/app.45083/full&hl=en&sa=X&scisig=AAGBfm08tdsc-a6hdNeaw1xB7JInXsZCeg&nossl=1&oi=scholaralrt Influence of Shear Thinning and Material Flow on Robotic Dispensing of PEG] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/ancac3 ACS Nano]
  
Line 119: Line 140:
 
==== Published in 2019 ====
 
==== Published in 2019 ====
  
 +
* [https://link.springer.com/article/10.1007/s40005-019-00451-1 The Advent of a Novel Manufacturing Technology in Pharmaceutics: Superiority of Fused Deposition Modeling 3D Printer] by a team from [http://pharmacy.yonsei.ac.kr/ the College of Pharmacy and the Yonsei Institute of Pharmaceutical Sciences, Yonsei University]
 +
* [https://www.cambridge.org/core/journals/mrs-communications/article/on-the-thermal-processing-and-mechanical-properties-of-3dprinted-polyether-ether-ketone/602A649BAF3A69235982033106FEF57E On the thermal processing and mechanical properties of 3D-printed polyether ether ketone] (PEEK) by a team from the [https://engineering.case.edu/macromolecular-science-and-engineering Department of Macromolecular Sciences & Engineering, Case Western Reserve University School of Engineering] and the Key Laboratory of E&M, [http://www.wsc.zjut.edu.cn/zjuten/index.jsp Zhejiang University of Technology]
 +
* [https://www.sciencedirect.com/science/article/pii/S1359835X19302465 Composites based on metallic particles and tuned filling factor for 3D-printing by Fused Deposition Modeling] by a team from [https://www.nanociencia.imdea.org/ IMDEA Nanociencia] in Madrid
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsami.9b06081 3D printing of Auxetic Metamaterials with Digitally Reprogrammable Shape] by a team from the [https://www.gatech.edu/ Georgia Tech] [https://www.me.gatech.edu/ School of Mechanical Engineering]
 +
* [https://ieeexplore.ieee.org/abstract/document/8722752 Automated Fiber Embedding for Tailoring Mechanical and Functional Properties of Soft Robot Components] by the [https://www.sutd.edu.sg/ Singapore University of Technology and Design's] [https://dmand.sutd.edu.sg/ DManD (Digitial Manufacturing and Design) Center]
 +
* [https://www.sciencedirect.com/science/article/pii/S0278612518304060 Image Analysis-Based Closed Loop Quality Control for Additive Manufacturing with Fused Filament Fabrication] by a team from the [https://www.ise.vt.edu/ Virginia Tech Grado Department of Industrial and Systems Engineering]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsapm.9b00118 Reprocessable 3D-Printed Conductive Elastomeric Composite Foams for Strain and Gas Sensing] by a team from the [https://chemistry.case.edu/ Chemistry] and [https://engineering.case.edu/macromolecular-science-and-engineering Macromolecular Science & Engineering] Departments of [https://case.edu/ Case Western Reserve University]
 
* [https://www.sciencedirect.com/science/article/pii/B9780128125243000077 Chapter 7 - Additive Manufacturing of Polyaryletherketones] in the [https://www.sciencedirect.com/book/9780128125243/peek-biomaterials-handbook PEEK Biomaterials Handbook]
 
* [https://www.sciencedirect.com/science/article/pii/B9780128125243000077 Chapter 7 - Additive Manufacturing of Polyaryletherketones] in the [https://www.sciencedirect.com/book/9780128125243/peek-biomaterials-handbook PEEK Biomaterials Handbook]
 
* [https://www.sciencedirect.com/science/article/pii/S0032386119301107 Fast Scanning Calorimetry for Semicrystalline Polymers in Fused Deposition Modeling] by a team from [http://www.mse.gatech.edu/ The Materials Science and Engineering School of Georgia Tech]
 
* [https://www.sciencedirect.com/science/article/pii/S0032386119301107 Fast Scanning Calorimetry for Semicrystalline Polymers in Fused Deposition Modeling] by a team from [http://www.mse.gatech.edu/ The Materials Science and Engineering School of Georgia Tech]

Revision as of 14:14, 16 July 2019

Below is a list of published works citing Hyrel equipment. 121 documents as of 16 July 2019.

Published Papers Citing Hybrid Manufacturing

Published in 2019

Published in 2018

Published Papers Citing Hyrel Cold Flow

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015

Published in 2014

Published Video Citing Hyrel Cold Flow

Published in 2017

Published Papers Citing Hyrel Warm Flow

Published in 2019

Published in 2018

Published in 2017

Published Papers Citing Hyrel Hot Flow

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015