Difference between revisions of "Published Papers"

From Hyrel3D
Jump to: navigation, search
(18 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
|}
 
|}
  
Below is a list of published works citing Hyrel equipment. 96 documents as of 11 March 2019.
+
Below is a list of published works citing Hyrel equipment. 106 documents as of 15 May 2019.
  
 
== '''Published Papers''' Citing Hybrid Manufacturing ==
 
== '''Published Papers''' Citing Hybrid Manufacturing ==
Line 19: Line 19:
 
==== Published in 2019 ====
 
==== Published in 2019 ====
  
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201808424 3D Printing of a Thermo- and Solvatochromic Composite Material Based on a Cu(II)–Thymine Coordination Polymer with Moisture Sensing Capabilities] by a team from [http://www.mse.ntu.edu.sg/Research/create/Pages/Home.aspx Nanyang Technological University (Singapore) and the Hebrew University of Jerusalem)]
+
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201801553 Printing Therapeutic Proteins in 3D using Nanoengineered Bioink to Control and Direct Cell Migration]  by a team by a team from [http://www.tamu.edu/ Texas A&M University].
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201801048 Advancing Frontiers in Bone Bioprinting], by a team primarily from [http://www.ucla.edu/ The University of California at Los Angeles]
+
* [https://aip.scitation.org/doi/full/10.1063/1.5088801 Bactericidal Activity of 3D-printed Hydrogel Dressing Loaded with Gallium Maltolate] by a team from the [https://engineering.tamu.edu/biomedical Department of Biomedical Engineering], [http://www.tamu.edu Texas A&M University]
*[https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b00066 Direct Writing of Tunable Living Inks for Bioprocess Intensification] in [https://pubs.acs.org/journal/nalefd ACS's Nano Letters]
+
* [https://www.sciencedirect.com/science/article/pii/S0264127519302278 Extrudable Hydroxyapatite / Plant Oil-based Biopolymer Nanocomposites for Biomedical Applications: Mechanical Testing and Modeling] by a team from [https://uwaterloo.ca/systems-design-engineering/?utm_source=uwaterloo.ca%2Fengineering&utm_medium=site The Systems Design Engineering Department of The University of Waterloo, Canada]
*[https://pubs.acs.org/doi/abs/10.1021/acsami.8b13792 Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting] by a team from the [https://www.bme.ufl.edu/ University of Florida's Biomedical Engineering Department]
+
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201900469 3D Printed Multifunctional, Hyperelastic Silicone Rubber Foam] by a team from the [https://engineering.case.edu/macromolecular-science-and-engineering Macromolecular Science & Engineering] Department of [https://case.edu/ Case Western Reserve University]
*[https://arc.aiaa.org/doi/abs/10.2514/6.2019-1239 Microwave Control of Composite Solid Propellant Flame Spread Through Eddy Current Heating of Wired/Foiled Propellant] by a team from [https://www.me.iastate.edu/ Iowa State University's Mechanical Engineering Department]
+
* [https://patents.google.com/patent/US20190077071A1/en Extrusion Printing of Liquid Crystal Elastomers], a patent application by a team from the [https://be.utdallas.edu/ Bioengineering Department of the University of Texas, Dallas]
*[https://link.springer.com/article/10.1007/s41779-018-00299-y Developments of 3D polycaprolactone/beta-tricalcium phosphate/collagen Scaffolds for Hard Tissue Engineering] by a multi-disciplinary, multi-university team from Istanbul, Turkey
+
* [https://www.mdpi.com/1996-1944/12/5/817/pdf Tailoring a Silver Paste for Additive Manufacturing of Co-Fired Ferrite Magnetic Components] by a team from [http://vt.edu Virginia Tech]
*[https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.8b00836 3D Printing of Poloxamer 407 Nanogel Discs and Their Applications in Adjuvant Ovarian Cancer Therapy] by a team from the [https://www.stlcop.edu/ St. Louis College of Pharmacy]
+
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201808424 3D Printing of a Thermo- and Solvatochromic Composite Material Based on a Cu(II)–Thymine Coordination Polymer with Moisture Sensing Capabilities] by a team from [http://www.mse.ntu.edu.sg/Research/create/Pages/Home.aspx Nanyang Technological University (Singapore) and the Hebrew University of Jerusalem)]
 +
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201801048 Advancing Frontiers in Bone Bioprinting], by a team primarily from [http://www.ucla.edu/ The University of California at Los Angeles]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b00066 Direct Writing of Tunable Living Inks for Bioprocess Intensification] in [https://pubs.acs.org/journal/nalefd ACS's Nano Letters]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsami.8b13792 Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting] by a team from the [https://www.bme.ufl.edu/ University of Florida's Biomedical Engineering Department]
 +
* [https://arc.aiaa.org/doi/abs/10.2514/6.2019-1239 Microwave Control of Composite Solid Propellant Flame Spread Through Eddy Current Heating of Wired/Foiled Propellant] by a team from [https://www.me.iastate.edu/ Iowa State University's Mechanical Engineering Department]
 +
* [https://link.springer.com/article/10.1007/s41779-018-00299-y Developments of 3D polycaprolactone/beta-tricalcium phosphate/collagen Scaffolds for Hard Tissue Engineering] by a multi-disciplinary, multi-university team from Istanbul, Turkey
 +
* [https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.8b00836 3D Printing of Poloxamer 407 Nanogel Discs and Their Applications in Adjuvant Ovarian Cancer Therapy] by a team from the [https://www.stlcop.edu/ St. Louis College of Pharmacy]
  
 
==== Published in 2018 ====
 
==== Published in 2018 ====
Line 96: Line 102:
 
==== Published in 2019 ====
 
==== Published in 2019 ====
  
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsapm.9b00016 Architecture can Significantly Alter the Energy Release Rate from Nanocomposite Energetics] by a team from [https://www.umdphysics.umd.edu/ University of Maryland's Dept. of Physics]
 
* [https://www.sciencedirect.com/science/article/pii/S2405886618300502 Comparative Characterization of the Hydrogel Added PLA/β-TCP Scaffolds Produced by 3D Bioprinting] by a team from [https://www.marmara.edu.tr/en Marmara University, Turkey]
 
* [https://www.sciencedirect.com/science/article/pii/S2405886618300502 Comparative Characterization of the Hydrogel Added PLA/β-TCP Scaffolds Produced by 3D Bioprinting] by a team from [https://www.marmara.edu.tr/en Marmara University, Turkey]
 
* [https://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta12428k/unauth#!divAbstract 3D Printing of Thermoreversible Polyurethanes with Targeted Shape Memory and Precise In-Situ Self-Healing Properties] by Yue Zhang, Xiangyu Yin, Mingyue Zheng, Carolyn Moorlag, Jun Yang and Zhonglin Wang.
 
* [https://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta12428k/unauth#!divAbstract 3D Printing of Thermoreversible Polyurethanes with Targeted Shape Memory and Precise In-Situ Self-Healing Properties] by Yue Zhang, Xiangyu Yin, Mingyue Zheng, Carolyn Moorlag, Jun Yang and Zhonglin Wang.
Line 119: Line 126:
 
==== Published in 2019 ====
 
==== Published in 2019 ====
  
 +
* [https://www.sciencedirect.com/science/article/pii/S0278612518304060 Image Analysis-Based Closed Loop Quality Control for Additive Manufacturing with Fused Filament Fabrication] by a team from the [https://www.ise.vt.edu/ Virginia Tech Grado Department of Industrial and Systems Engineering]
 +
* [https://pubs.acs.org/doi/abs/10.1021/acsapm.9b00118 Reprocessable 3D-Printed Conductive Elastomeric Composite Foams for Strain and Gas Sensing] by a team from the [https://chemistry.case.edu/ Chemistry] and [https://engineering.case.edu/macromolecular-science-and-engineering Macromolecular Science & Engineering] Departments of [https://case.edu/ Case Western Reserve University]
 +
* [https://www.sciencedirect.com/science/article/pii/B9780128125243000077 Chapter 7 - Additive Manufacturing of Polyaryletherketones] in the [https://www.sciencedirect.com/book/9780128125243/peek-biomaterials-handbook PEEK Biomaterials Handbook]
 
* [https://www.sciencedirect.com/science/article/pii/S0032386119301107 Fast Scanning Calorimetry for Semicrystalline Polymers in Fused Deposition Modeling] by a team from [http://www.mse.gatech.edu/ The Materials Science and Engineering School of Georgia Tech]
 
* [https://www.sciencedirect.com/science/article/pii/S0032386119301107 Fast Scanning Calorimetry for Semicrystalline Polymers in Fused Deposition Modeling] by a team from [http://www.mse.gatech.edu/ The Materials Science and Engineering School of Georgia Tech]
  

Revision as of 17:26, 15 May 2019

Below is a list of published works citing Hyrel equipment. 106 documents as of 15 May 2019.

Published Papers Citing Hybrid Manufacturing

Published in 2018

Published Papers Citing Hyrel Cold Flow

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015

Published in 2014

Published Video Citing Hyrel Cold Flow

Published in 2017

Published Papers Citing Hyrel Warm Flow

Published in 2019

Published in 2018

Published in 2017

Published Papers Citing Hyrel Hot Flow

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015