Difference between revisions of "Published Papers"

From Hyrel3D
Jump to: navigation, search
(Published Papers Citing Hybrid Manufacturing)
(11 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
|}
 
|}
  
Below is a list of published works citing Hyrel equipment. 77 documents as of 11 Dec 2018.
+
Below is a list of published works citing Hyrel equipment. 85 documents as of 14 Jan 2019.
  
 
== '''Published Papers''' Citing Hybrid Manufacturing ==
 
== '''Published Papers''' Citing Hybrid Manufacturing ==
Line 16: Line 16:
  
 
== '''Published Papers''' Citing [[Cold_and_Warm_Flow|Hyrel Cold Flow]] ==
 
== '''Published Papers''' Citing [[Cold_and_Warm_Flow|Hyrel Cold Flow]] ==
 +
 +
==== Published in 2019 ====
 +
 +
*[https://arc.aiaa.org/doi/abs/10.2514/6.2019-1239 Microwave Control of Composite Solid Propellant Flame Spread Through Eddy Current Heating of Wired/Foiled Propellant] by a team from [https://www.me.iastate.edu/ Iowa State University's Mechanical Engineering Department]
 +
*[https://link.springer.com/article/10.1007/s41779-018-00299-y Developments of 3D polycaprolactone/beta-tricalcium phosphate/collagen Scaffolds for Hard Tissue Engineering] by a multi-disciplinary, multi-university team from Istanbul, Turkey
 +
*[https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.8b00836 3D Printing of Poloxamer 407 Nanogel Discs and Their Applications in Adjuvant Ovarian Cancer Therapy] by a team from the [https://www.stlcop.edu/ St. Louis College of Pharmacy]
  
 
==== Published in 2018 ====
 
==== Published in 2018 ====
  
 +
*[https://www.sciencedirect.com/science/article/pii/S2214289418300504 Nano Silica-Carbon-Silver Ternary Hybrid Induced Antimicrobial Composite Films for Food Packaging Application] by a team from the [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home Materials Science & Enginnernig Department of Tuskegee University]
 +
*[http://sffsymposium.engr.utexas.edu/sites/default/files/2018/078%20AdditiveManufacturingofAluminaComponentsbyEx.pdf Additive Manufacturing of Alumina Components by Extrusion of in-situ UV-Cured Pastes] by a team from [https://www.sandia.gov Sandia National Laboratory] and [http://cmem.unm.edu/ The University of New Mexico's Center for MicroEngineered Materials]
 
*[https://onlinelibrary.wiley.com/doi/pdf/10.1002/adhm.201801353 Hydrocolloid Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone] by a team from the [https://sydney.edu.au/engineering/about/school-of-aerospace-mechanical-and-mechatronic-engineering.html/ School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney] and the [http://www.chemistry.unsw.edu.au/ School of Chemistry, University of New South Wales, Sydney]
 
*[https://onlinelibrary.wiley.com/doi/pdf/10.1002/adhm.201801353 Hydrocolloid Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone] by a team from the [https://sydney.edu.au/engineering/about/school-of-aerospace-mechanical-and-mechatronic-engineering.html/ School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney] and the [http://www.chemistry.unsw.edu.au/ School of Chemistry, University of New South Wales, Sydney]
 
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201800343 Hydrocolloid Inks for 3D Printing of Porous Hydrogels] by a team with members from [https://engineering.tamu.edu/biomedical/index.html The Department of Biomedical Engineering, Texas A&M University], [https://www.bme.utexas.edu/ The Department of Biomedical Engineering, University of Texas at Austin], and [https://chme.nmsu.edu/ The Department of Chemical and Materials Engineering, New Mexico State University]
 
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201800343 Hydrocolloid Inks for 3D Printing of Porous Hydrogels] by a team with members from [https://engineering.tamu.edu/biomedical/index.html The Department of Biomedical Engineering, Texas A&M University], [https://www.bme.utexas.edu/ The Department of Biomedical Engineering, University of Texas at Austin], and [https://chme.nmsu.edu/ The Department of Chemical and Materials Engineering, New Mexico State University]
Line 99: Line 107:
 
==== Published in 2018 ====
 
==== Published in 2018 ====
  
 +
* [https://www.mdpi.com/1996-1944/12/1/1/pdf Mechanical Characterizations of 3D-printed PLLA/Steel Particle Composites] by a team from the [https://engineering.unl.edu/mme/ Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln]
 +
* [http://sffsymposium.engr.utexas.edu/sites/default/files/2018/019%20PrecisionEnhancementof3DPrintingviaInSituM.pdf Precision Enhancement of 3D Printing via in-situ Metrology] by a team from UCLA's [https://www.mae.ucla.edu/ Mechanical and Aerospace Engineering] and [https://www.ee.ucla.edu Electrical and Computer Engineering] Departments and the [https://cnsi.ucla.edu/California NanoSystems Institute]
 
* [https://patentimages.storage.googleapis.com/b6/d1/c3/a9cfe4b105c242/US20180298215A1.pdf Feedstock for 3D Printing and Uses Thereof] Patent application by a team from [https://www.sdu.dk/en/ The University of Southern Denmark]
 
* [https://patentimages.storage.googleapis.com/b6/d1/c3/a9cfe4b105c242/US20180298215A1.pdf Feedstock for 3D Printing and Uses Thereof] Patent application by a team from [https://www.sdu.dk/en/ The University of Southern Denmark]
 
* [https://www.sciencedirect.com/science/article/pii/S2214860418303257 Interlayer Bonding Improvement of Material Extrusion Parts with Polyphenylene Dulfide Using the Taguchi Method] by a team from the [https://www.gatech.edu Georgia Tech] [http://www.mse.gatech.edu School of Materials Science and Engineering]
 
* [https://www.sciencedirect.com/science/article/pii/S2214860418303257 Interlayer Bonding Improvement of Material Extrusion Parts with Polyphenylene Dulfide Using the Taguchi Method] by a team from the [https://www.gatech.edu Georgia Tech] [http://www.mse.gatech.edu School of Materials Science and Engineering]

Revision as of 21:03, 14 January 2019

Below is a list of published works citing Hyrel equipment. 85 documents as of 14 Jan 2019.

Published Papers Citing Hybrid Manufacturing

Published in 2018

Published Papers Citing Hyrel Cold Flow

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015

Published in 2014

Published Video Citing Hyrel Cold Flow

Published in 2017

Published Papers Citing Hyrel Warm Flow

Published in 2018

Published in 2017

Published Papers Citing Hyrel Hot Flow

Published in 2018

Published in 2017

Published in 2016

Published in 2015